4 research outputs found

    Dynamic grid fault analysis in wind power plant with DFIG by using supervisory control and data acquisition (SCADA) viewer

    No full text
    Faults in electrical power systems are among the key factors and sources to network disturbances, however control strategies are among key faults clearing techniques for the sake of safe operational mode of the system.Some researchers have shown various limitations of control strategies such as slow dynamic response,inability to switch Off and On network remotely and fault clearing time. For a system with wind energy technologies, if the power flow of a wind turbine is interrupted by a fault, the intermediate-circuit voltage between the machine-side converter and line-side converter will fall in unacceptably high values.To overcome the aforementioned issues, this paper used a Matlab simulations and experiments in order to analyze and validate the results.The results showed that fault ride through (FRT) with SCADA Viewer software are more adaptable to the variations of voltage and wind speed in order to avoid loss of synchronism. Therefore at the speed of 12.5m/s a wind produced a rated power of 750W and remained in synchronization before and after a fault created and cleared but worked as generator meanwhile at speed of 3.4m/s wind disconnected from grid and started working as a motor and consumed active power (P=-25watts) and voltage dip at 100% .For the protection purpose, the DC chopper and crowbar should be integrated towards management of excess energy during faults cases

    Fault Ride through Capability Analysis (FRT) in Wind Power Plants with Doubly Fed Induction Generators for Smart Grid Technologies

    No full text
    Faults in electrical networks are among the key factors and sources of network disturbances. Control and automation strategies are among the key fault clearing techniques responsible for the safe operation of the system. Several researchers have revealed various constraints of control and automation strategies such as a slow dynamic response, the inability to switch the network on and off remotely, a high fault clearing time and loss minimization. For a system with wind energy technologies, if the power flow of a wind turbine is perturbed by a fault, the intermediate circuit voltage between the machine side converter and line side converter will rise to unacceptably high values due to the accumulation of energy in the DC link capacitor. To overcome the aforementioned issues, this paper used MATLAB simulations and experiments to analyze and validate the results. The results revealed that fault ride through capability with Supervisory Control and Data Acquisition (SCADA) viewer software, Active Servo software and wind sim packages are more adaptable to the variations of voltage sag, voltage swell and wind speed and avoid loss of synchronism and improve power quality. Furthermore, for protection purposes, a DC chopper and a crowbar should be incorporated into the management of excess energy during faults and a ferrite device included for the reduction of the electromagnetic field

    Solar PV Minigrid Technology: Peak Shaving Analysis in the East African Community Countries

    No full text
    Solar PV research in East Africa has concentrated on solar home systems (SHS) in each country. However, several other fundamental advances in the solar photovoltaic (PV) industry have emerged, and the developments have seen the sector experienced significant growth and diversification of models, regulation, and financing. This paper begins with an extensive narrative on the solar PV outlook of each of the six countries studied. A solar PV minigrid was also simulated using HOMER software with a critical load of 2800.0 kWh/day in order to analyze the peak shaving capability and assess the affordability of the solar PV microgrid having commercial and industrial loads. The regional overview of the efforts was identified, followed by a description of the models, payment methods, and barriers encountered collectively. The lessons from this research suggest that there is a vast potential for solar PV micro and minigrid deployment in the region with a population of over 100 million people lacking access to electricity by the end of 2019. It shows that solar PV minigrid deployment in East Africa is still at a nascent phase. Also, minigrid developers face several challenges operating in rural areas. While solar PV minigrids remain fairly nascent in the East Africa region, the technology is gaining traction, a development that indicates budding confidence in the solar PV minigrid technology. This study identifies that (1) with large critical loads (industrial and commercial), solar PV minigrid can still contribute to affordable electricity through peak shaving, except Tanzania; (2) solar PV minigrid projects are largely dependent on donor financing, require vast financial diversity to get off the ground, and offer consistent service; (3) Governments support in the form of National electrification strategies, policies, and regulation are key ingredients for realizing the electrification of rural populations through minigrids; (4) hybrid minigrids and power demand creation have emerged as an approach that ensures sustainability or profitability for the operating solar minigrid firms. Overall, government policy and regulation, funding, and financial sustainability remain the major hurdles to minigrid uptake in the region
    corecore